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Abstract The relaxation of random walks and the autocorrelation function on the 
landscape of the gaph-bipartitioning problem (GBP) are calculated. 

1. Introduction 

The investigation of the correlation structure of combinatorial optimization problems 
has gained considerable interest recently. 

One of the combinatorial optimization problems which has been studied in detail 
is the graph-bipartitioning problem (GBP); cf Fu and Anderson (1986), Liao (1987). 
Banavar et al (1989, Wiethege and Sherrington (1987) or Fu (1989). Given a graph 
with an even number n of vertices and an associated matrix If, the task is to find a 
partition of the vertex set V into two equal-sized subsets A and B such that 

is minimized. In a variant of the problem the graph is edge-weighted with weights 
hij along an edge connecting the vertices i and j. We will treat (as usual) the special 
case where the h i j ,  i 6 j, are mutually independent random variables. 

The GBP is closely related to the Sherrington-Kirkpatrick spin glass. In fact, the 
cost function may be viewed as an SK Hamiltonian with the constraint of vanishing 
total spin, and the expected value of the global optimum can also be related to the 
ground state of the SK model (Fu and Anderson 1986). 

The main difference of the two models from the point of view of optimization 
heuristics consists of an entirely different topology of the configuration space C. For 
the SK model, the canonical metric is induced by single spin flips. This is tantamount 
to the Hamming metric and thus C,, = B", a binary hypercube of dimension n. 

The configuration space C of the GBP consists of the set of all partitions of the 
vertex set in two equally sized subsets A and B. A configuration can be encoded 
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as a binary string by labelling a vertex by ‘1’ if it is contained in subset A and by 
‘0’ if it is contained in B. The canonical move set consists of exchanges of single 
vertices, defining two equally sized partitions of V as neighbours of each other if the 
symmetric differencest 
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A e C = D e B = { u 1 , u 2 }  (2) 
both equal the pair of exchanged vertices. With this definition of neighbourhood 
the set C can be viewed a graph. The minimum number of pair exchanges 
d([A; B], [C; D]) necessary to convert [A; B] into [C; D] is then the minimal number 
of edges separating the vertices [A; E] and [C; D] in the ‘configuration graph C and 
is thus a metric. 

Let $ p  denote the encoding of a partition p as a binary string. It is easily seen that 
the usual distance between vertices of a graph, d,( [A; B], [C; D]) and the Hamming 
&iaiice d,($iA,Bj,$[C,Dj) are ;y 

d r ( p i , ~ , )  = $ ~ H ( $ P ~ , $ P , ) .  (3) 
The distance sequence, DS, i.e. the number of configurations with a given distance 
from an arbitrary reference point, the number of configurations, #C, and the diameter 
in the configuration space, diamC, are easily obtained: 

diam(C, d,) = n /2 .  

By using the string representation, C is imbedded in the Boolean hypercube B”. 
However, 

Thus for large problems most vertices of the Boolean hypercube do not code for valid 
configurations of the GBP and the GBP is a quite strongly constrained relative of the 
SK spin glass. 

2. Relaxation of random walks 

The stat’istical properties of random walks on the graph C are completely contained 
in the probabilities for a random walk to be within a distance d from the 
starting point after s steps. In general this probability distribution fulfils the following 
recursion relations on any distance transitive graph. 

4 s d  = a f ; _ 1 4 s - l , d - l  + ‘ ~ ~ ~ - 1 , d  + ‘ d + l $ a - l , d + l  

$00 = 1 (6) 
$ sd = o  for d > s. 

t The symmetric difference of W O  sets X and Y is defined as X e Y = (X \ ‘ Y )  U (Y \ X) = 
( X u  Y) \(XnY). 
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The coefficients a:, a! and a i  denote the probability of making a step 'forward', 
'sideward' and 'backward', respectively, given the walk is within a distance d from the 
starting point. For the GBP graph C one obtains easily 

a: = ( n  - 2d)'/nz 

a! = 4d(n - 2d)/n2 

a ,  = 4d2/n2 .  

Although we have no closed solution for $sd, we can obtain some insight into the 
relaxation behaviour of random walks from the expected values of the distance and 
the squared distance from the starting point after s steps along the walk 

Using the recursion relation for &, one obtains after some simple algebra a system 
of linear inhomogeneous difference equations 

(9) 

The fixed points of this difference equations are unique and correspond to the l i t  
s - 00, or equivalently, random sampling, 

It is convenient to introduce the corresponding relaxa~ion firnetions 

The difference equations for qk(s )  read 
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For q l ( s )  we obtain immediately 
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and for q2(s) an ansatz with two different relaxation rates yields readily 

The relaxation times are 

= +(n + 2) + O(l /n)  

rz = i ( n  - 3) + O(l /n)  

The variance of 4so as a function of the number of steps is of course given by 

~ ' ( s )  = Az(s)  - A i ( s ) .  (15) 

3. Autocorrelation functions 

Weinberger (1990) proposed the autocorrelation function 

as the most useful characteristic of a fitness landscape f : C - R. Apart from totally 
uncorrelated landscapes, p(d)  = 6(d,0), the simplest class consists of the nearly 
fractal AR(1) landscapes (Sorkin 1988, Weinberger and Stadler 1992) characterized 
'by 

p(d )  exp(-d/X) d < n .  (17) 

The definition of the autocorrelation function, (16) can be rewritten as 

Now let us consider two partitions [ A ,  B] and [C, D]. Let 

S = A n C  T = B n D  

P = A n D  Q = B n C  
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Then the difference of the cost functions becomes 

f(l.4; Bl)  - f([C; Dl) 

= c + c + c + c  
- c - E - e - c  

= cc hij - h i j  t h i j  - CChij 

i € S , j € T  iEP,jET i€S , j€Q i€P , j€Q 

i€S,jET i € Q , j € T  i€S,jEP i€Q, i€P  

iEP j € T  i € Q j € T  iES j E Q  iES j € P  

Observe that d = #P = #Q and n /2  - d = #S = #T. Thus we have for the 
expected value of the squared distance (using the fact that all sums consist of different 
independent random variables and are thus again mutually independent) 

The variance can be calculated by averaging over these expressions weighted with the 
probability p ( d )  for choosing two partitions with a distance d at random 

One obtains 

=I2 
2varf = c d ( n / 2 - d )  (23) 

d=O 

The ddependent part of the sum can be calculated explicitly using m = n/2 and 

d=O 

Z(m - 1) 

yielding finally 

n’n-2  
var H . 1 

varf = T([f(.) - f(y)I2)rmdom = -- 1 6 n - 1  
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Flgure 1. lypical example of an empirical autworrelation function ~ ( s )  obtained by 
averaging 50 random walks of length 100000 on a graph with n = 50 vertias and 
wnnectinty p = 0.2 ?he broken curve is the theoretical prediction (29). 

Thus the autocorrelation function is 

independent of the distribution of the elements of the matrix H associated with the 
graph r. 

Instead of treating p ( d )  as a function of the distance of the landscape one may 
also use the autocorrelation function along a random walk as a characteristic of the 
landscape { x * }  

Since the random walk is obviousiy ergodic and the distribution of values approaches 
a normal distribution by virtue of the central limit theorem, we expect that the 'time 
series' sampled along the random walk is an AR(1) process (Weinberger 1990) in the 
limit of large n,  and thus ~ ( s )  at least approaches a single decaying exponential as 
n -t m. Surprisingly, there is no finite size correction to this behaviour-the two 
autocorrelation functions p ( d )  and ~ ( s )  are related by 
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which in the case of the GBP simplifies to 

n - 1  n - 1  
r ( s ) = 1 - 8  n( n - 2) A1(5) + 1Gn2(. - 2) 

S 
= exp ( - m) 
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Flgurr 2. Empirical wrrelation length as a function of the number of vertices n. 
The correlation length is. as predicted, independent of the mnnectiniy p of the gnph. 
The broken cwve shows the exact prediction XW’lk = -1/ In( 1 - 8/n + 8/n2). 

Let us now define the scaled distance x by 

x = d/diamC = 2d/n.  

One obtains the scaled autocorrelation functions 
4 2 A.) = 1 - 4 x + 4 x 2 -  -(x-.?) i 1 - 4 x + 4 2  

n - 2  

which is exactly the same result as for the Sherrington-Kirkpatrick spin glass in the 
limit n - oi, (Weinberger and Stadler 1992). 
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4. Conclusions 

The GBP may serve as a prototype model for fitness landscapes in combinatorial opti- 
mization and biological evolution (Fontana et a1 1991, 1992). It has a highly frustrated 
value landscape and is thus likely to be a typical problem. Nevertheless, some basic 
global properties-relaxation of random walh, pair correlation and expected value of 
the global optimumdan be obtained analytically. 

It has been shown recently (Stadler and Schnabl 1992) for the travelling salesman 
problem that the correlation structure of the landscape is closely related to the 
performance of optimization heuristics-the number of local optima decreases with 
increasing correlation length. In fact, there is a single local optimum in a patch 
with a radius of roughly the correlation length. Since trapping in local optima is the 
main reason for unsatisfying performance of a heuristic, choosing a move set such as 
io maximize ihe correiation iengtii and simuitanousiy keeping constant the number 
of nearest neighbours seems to be a promising strategy for improving optimization 
algorithms. 

It is interesting to note that, despite the fact that the configuration spaces C,, 
Sherrington-Kirkpatrick spin glass and C,,, differ considerably, both systems exhibit 
the same correlation structure in the limit of large systems. 
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